iaf_psc_alpha – Leaky integrate-and-fire model with alpha-shaped input currents

Description

iaf_psc_alpha is a leaky integrate-and-fire neuron model with

  • a hard threshold,

  • a fixed refractory period,

  • no adaptation mechanisms,

  • \(\alpha\)-shaped synaptic input currents.

Membrane potential evolution, spike emission, and refractoriness

The membrane potential evolves according to

\[\frac{dV_\text{m}}{dt} = -\frac{V_{\text{m}} - E_\text{L}}{\tau_{\text{m}}} + \frac{I_{\text{syn}} + I_\text{e}}{C_{\text{m}}}\]

where the synaptic input current \(I_{\text{syn}}(t)\) is discussed below and \(I_\text{e}\) is a constant input current set as a model parameter.

A spike is emitted at time step \(t^*=t_{k+1}\) if

\[V_\text{m}(t_k) < V_{th} \quad\text{and}\quad V_\text{m}(t_{k+1})\geq V_\text{th} \;.\]

Subsequently,

\[V_\text{m}(t) = V_{\text{reset}} \quad\text{for}\quad t^* \leq t < t^* + t_{\text{ref}} \;,\]

that is, the membrane potential is clamped to \(V_{\text{reset}}\) during the refractory period.

Synaptic input

The synaptic input current has an excitatory and an inhibitory component

\[I_{\text{syn}}(t) = I_{\text{syn, ex}}(t) + I_{\text{syn, in}}(t)\]

where

\[I_{\text{syn, X}}(t) = \sum_{j} w_j \sum_k i_{\text{syn, X}}(t-t_j^k-d_j) \;,\]

where \(j\) indexes either excitatory (\(\text{X} = \text{ex}\)) or inhibitory (\(\text{X} = \text{in}\)) presynaptic neurons, \(k\) indexes the spike times of neuron \(j\), and \(d_j\) is the delay from neuron \(j\).

The individual post-synaptic currents (PSCs) are given by

\[i_{\text{syn, X}}(t) = \frac{e}{\tau_{\text{syn, X}}} t e^{-\frac{t}{\tau_{\text{syn, X}}}} \Theta(t)\]

where \(\Theta(x)\) is the Heaviside step function. The PSCs are normalized to unit maximum, that is,

\[i_{\text{syn, X}}(t= \tau_{\text{syn, X}}) = 1 \;.\]

As a consequence, the total charge \(q\) transferred by a single PSC depends on the synaptic time constant according to

\[q = \int_0^{\infty} i_{\text{syn, X}}(t) dt = e \tau_{\text{syn, X}} \;.\]

By default, \(V_\text{m}\) is not bounded from below. To limit hyperpolarization to biophysically plausible values, set parameter \(V_{\text{min}}\) as lower bound of \(V_\text{m}\).

Note

NEST uses exact integration [1], [2] to integrate subthreshold membrane dynamics with maximum precision; see also [3].

If \(\tau_\text{m}\approx \tau_{\text{syn, ex}}\) or \(\tau_\text{m}\approx \tau_{\text{syn, in}}\), the model will numerically behave as if \(\tau_\text{m} = \tau_{\text{syn, ex}}\) or \(\tau_\text{m} = \tau_{\text{syn, in}}\), respectively, to avoid numerical instabilities.

For implementation details see the IAF Integration Singularity notebook.

Parameters

The following parameters can be set in the status dictionary.

Parameter

Default

Math equivalent

Description

E_L

-70 mV

\(E_\text{L}\)

Resting membrane potential

C_m

250 pF

\(C_{\text{m}}\)

Capacity of the membrane

tau_m

10 ms

\(\tau_{\text{m}}\)

Membrane time constant

t_ref

2 ms

\(t_{\text{ref}}\)

Duration of refractory period

V_th

-55 mV

\(V_{\text{th}}\)

Spike threshold

V_reset

-70 mV

\(V_{\text{reset}}\)

Reset potential of the membrane

tau_syn_ex

2 ms

\(\tau_{\text{syn, ex}}\)

Rise time of the excitatory synaptic alpha function

tau_syn_in

2 ms

\(\tau_{\text{syn, in}}\)

Rise time of the inhibitory synaptic alpha function

I_e

0 pA

\(I_\text{e}\)

Constant input current

V_min

\(-\infty\) mV

\(V_{\text{min}}\)

Absolute lower value for the membrane potenial (default \(-\infty\))

The following state variables evolve during simulation and are available either as neuron properties or as recordables.

State variable

Initial value

Math equivalent

Description

V_m

-70 mV

\(V_{\text{m}}\)

Membrane potential

I_syn_ex

0 pA

\(I_{\text{syn, ex}}\)

Excitatory synaptic input current

I_syn_in

0 pA

\(I_{\text{syn, in}}\)

Inhibitory synaptic input current

References

Sends

SpikeEvent

Receives

SpikeEvent, CurrentEvent, DataLoggingRequest

See also

Neuron, Integrate-And-Fire, Current-Based

Examples using this model